

(Java SDK)

Getting Started

Monnit Corporation

Version 2.1.0

Table of Contents

WHO THIS SOFTWARE DEVELOPMENT KIT (SDK) IS FOR 3

1 GETTING STARTED 3

2 START THE SAMPLE APPLICATION 3

3 REGISTER A GATEWAY 3

4 REGISTER A SENSOR 4

5 POINT GATEWAY AT THE SAMPLE APPLICATION 5

6 DATA MESSAGES 5

7 CREATING A SERVER 6

8 ADDING PROCESSING HANDLERS 7

9 GATEWAY REGISTRATION 8

10 SENSOR REGISTRATION 9

11 GATEWAY AND SENSOR MESSAGES 10

12 SENSOR AND GATEWAY UPDATE 10

13 LOCAL ALERT MESSAGING 12

14 REVIEW 13

 Who this Software Development Kit (SDK) is for
This is an SDK developed for use with the Monnit Hardware product line found at

www.monnit.com. Proficiency with Object Oriented Programing (OOP) in Java is

recommended.

1 GETTING STARTED
The Mine Java Library (MJL) and MineGUI Sample Application (MGSA) can be downloaded

from http://mine.imonnit.com/. To point a gateway to the sample application requires the

gateway to be unlocked. If your gateway isn’t unlocked you can purchase an unlock code from

the Monnit store www.monnit.com.

Your unlock code will be sent by email. You can find information on unlocking your

gateway and pointing to a custom server at www.monnit.com/support/. After your gateway is

unlocked you will want to become familiar with the Sample Application before creating your

own Application.

2 START THE SAMPLE APPLICATION
In the Mine Java zip file that you downloaded you will have a MineGUI folder. Navigate to the

MineGUI folder and open the dist folder. You will have two items, the lib folder and the

MineGUI.jar. Open the MineGUI.jar to begin the sample application.

With the MGSA now running you will want to choose 0.0.0.0 for the IP Address. This

will apply the localhost address to the server. Choose the type of protocol you would like to use,

and the port number. The default port number we use is 3000. You can now click Start Listening

button to start the server.

You will want to make sure to add an exception to any existing firewalls, so that the port

that you choose is available. Making sure to also include whichever protocols you are using as

well.

3 REGISTER A GATEWAY
Monnit Gateways allow sensors to communicate with your server. To be able to get the MGSA

to start collecting data you must first register a gateway.

To register a Gateway you will need the gateway id and the gateway type. The MGSA provides a

dropdown with every gateway type available in the MJL. Next click the Register button that is

underneath the gateway type dropdown.

http://www.monnit.com/
http://mine.imonnit.com/
http://www.monnit.com/Products/Accessories/Accessory/Monnit-Gateway---Unlock
http://www.monnit.com/support/hardware/gateways/unlocking-and-pointing-a-gateway-to-a-custom-host-or-ip-address

 The Find button finds a gateway that is registered to the server. The Remove will delist

the gateway from the server and prevent communication. The Reform Button will change the

communication channel the gateway talks over, clear the sensor list on the gateway, and

download a new sensor list. The Point to iMonnit button will point the gateway back to the

iMonnit cloud service.

4 REGISTER A SENSOR
Sensors collect data and send that data to a gateway they are registered to on each heartbeat

(Report Interval). The type of data collected is dependent on the type of sensor collecting the

data.

To register a sensor it requires you to have a gateway id and sensor id. You will want to

put the ids in their respective textboxes. Select the sensor type from the available drop down and

click the Register button.

The Find button finds a sensor that has be registered to a gateway. The Remove button

removes a sensor from the gateways sensor list. After removing the sensor you will want to

reform the specific gateway(s) the sensor was registered to. This way the gateways that had the

sensor in its sensor list will no longer collect the specific sensors data. The Update button will

update a sensor’s heartbeat to one minute. If the button is clicked a second time it will update to

10 second heartbeat. If you click it again it will put it back to one minute.

5 POINT GATEWAY AT THE SAMPLE APPLICATION
To point your gateway, you will need to know the gateway id, gateway code, ip address, and the

Port the MGSA is using. Will then want to open an internet browser (IE, Firefox, Chrome) and

navigate to www.imonnit.com/point. You will put in your gateway id and gateway code into

their respective textboxes. If the gateway isn’t unlocked yet at this point it will ask for your

unlock code you will then need to put it in. The last page will ask for the new servers ip address

and port. For more detailed information pointing to a new server you can look up at

www.monnit.com/support/.

6 DATA MESSAGES
After the gateway has been pointed to the correct ip address and port. The gateway will now be

able to communicate with the server. You will be able to watch the messages come in at the

bottom of the SA.

Typical data messages will contain the gateway message and the specific data message

from that gateway’s sensors.

https://www.imonnit.com/point
http://www.monnit.com/support/hardware/gateways/unlocking-and-pointing-a-gateway-to-a-custom-host-or-ip-address

7 CREATING A SERVER
The basis of the MJL is the ability of creating a server application that will parse your Monnit

Hardware data. In the MGSA the class titled GUIListenerFunctions.java there is a function

named startButtonPressed(). This function creates a new MineServer object by passing in the

protocol to be used (tcp, udp, or both), ip address selected, and the port number. After the new

object is instantiated you are able to call the StartServer() function as shown below starting on

line number 39 of the GUIListenerFunctions.java class:

Your server is now able to be started. Next you will want to add in all your processing

handlers.

8 ADDING PROCESSING HANDLERS
There are seven handlers used in the MJL that you will want to “hook up”. Here is the list of

handlers you will need to create.

1. GatewayMessageHandler – prints gateway messages

2. SensorMessageHandler – prints sensor messages

3. ExceptionHandler – handles possible incoming exceptions

4. PersistSensorHandler – persists the sensor object and lets you know when the sensor has

been updated

5. PersistGatewayHandler – persists the gateway object and lets you know when the

gateway has been updated

6. UnknownGatewayHandler – how to process unknown gateways

7. ResponseHandler – processing of all message responses

Below we show you how to add the handlers to a server starting on line number 61 of the

GUIListenerFunctions.java class:

You are now ready to start registering gateways.

9 GATEWAY REGISTRATION
To be able to register your gateway there are a few things we are going to want to know.

1. Gateway ID

2. Gateway Type

3. Gateway Firmware Version

4. Radio Firmware Version

5. Host Address (gateway should be using to talk to the server)

6. Port (gateway should be using to talk to the server)

You can get the Gateway Firmware Version and Radio Firmware Version by visiting

www.imonnit.com/lookup and entering in your gateway id and gateway code found on your

gateway hardware.

After getting all the information you would create a new gateway object using the

information and pass it as a parameter to the MineServer function RegisterGateway(Gateway

gateway). As shown below starting at line number 156 of the GUIListenerFunctions.java class:

 We are setting the isDirty flag to false, so that the gateway checks into the server for the

first time instead of trying to update. It will read in all the configurations from the gateway and

update the gateway object automatically.

https://www.imonnit.com/lookup

10 SENSOR REGISTRATION
To register a sensor you need four pieces of information.

1. Sensor ID

2. Sensor Application

3. Firmware Version

4. Gateway ID

Sensor application and firmware can be obtained from www.imonnit.com/lookup by entering in

your sensor id and sensor code found on the sensor hardware.

 After all the information is collected the programmer will create a new sensor object.

You will need the id of the gateway you are going to register the sensor to. This will add the

sensor into the gateway’s sensor list. You will pass the gateway id and new sensor object as

parameters to the MineServer function RegisterSensor(int gatewayid,Sensor sensor) as shown

below starting at line number 190 of the GUIListenerFunctions.java class:

https://www.imonnit.com/lookup

 When the sensor first joins the network it will send a read configuration. This will pass

all of the specific sensor’s configurations to the server and will call the ProcessPersistSensor(int

SensorID) function from PersistSensorHandle object which will update the sensor. You are now

ready to start collecting your sensor data.

11 GATEWAY AND SENSOR MESSAGES
To process Gateway Messages there is a handler that we added earlier in this guide the

GatewayMessageHandler class implements the interface iGatewayMessageHandler, so that we

can override the ProcessGatewayMessage(GatewayMessage gatewayMessage) function. In the

MGSA we simply call a print function and pass gatewayMessage.toString(). As shown below

starting at line number 8 of the GatewayMessageHandler.java class:

 Similarly, to process sensor messages you will create the SensorMessageHandler class

that implements the iSensorMessageHandler interface and override the

ProcessSensorMessages(List<SensorMesssage> sensorMessageList,Gateway gateway) function.

In theMGSAwe iterate through the sensorMessageList and do a simple print on each individual

message using the overridden toString() function from the SensorMessage object. As shown

below starting at line number 13 of the SensorMessageHandler.java class:

 You are now ready to start receiving data now and updating configurations of the

gateway object and sensor objects.

12 SENSOR AND GATEWAY UPDATE
To update a sensor you will need to know the sensors application type by calling

ApplicationBase.GetType(int applicationID) and passing the sensors monnitapplication.value()

this will bring back the correct class, so that you can call the correct sensor edit function and

update page you will want to create. Looking at TemperatureBase’s SensorEdit function we can

see that it contains the following parameters:

1. Sensor sens

2. Boolean isFahrenheit

3. Double heartbeat

4. Double awareStateHeartBeat

5. Integer assessmentsPerHeartBeat

6. Double minimumThreshold

7. Double maximumThreshold

8. Double hysteresis

9. Integer failedTransmissionBeforeLinkMode

In the below example we are just passing a heartbeat and null for the other values that we

do not want to change. As Shown below starting at line number 20 of the UpdateSensor.java

class:

This will set only the heartbeat. If the heartbeat is lower than the aware state heartbeat it

will also set that as well. You can read more information on every sensor edit function in the

Mine Java API documentation found at mine.imonnit.com.

To update the gateway Heartbeat (read in the gateway object as ReportInterval.), Server

Host Address, Port, or Poll Interval. You will want to set the corresponding attributes of the

gateway object and set the isDirty flag to true. In the example below we set the gateway

object, so that it’s ServerHostAddress and Port are able to be pointed back to the iMonnit

Cloud Service. You can find this starting at line number 301 of the

GUIListenerFunctions.java class:

http://mine.imonnit.com/

13 Local Alert Messaging
The Monnit Wireless Local Alert provides an additional way to receive critical notifications and

sensor readings. Upon receiving a message the Local Alert can flash an LED, sound an audible

alarm, and display critical notification information. The Local Alert can also be used to display

sensor readings. To send a message to the Local Alert you will want to pass the following

parameters to the SendMessage function in the AttentionBase Class.

1. Sensor sens: the local alert sensor object you want to send the message to.

2. Int deviceID: this is the id of the sensor or gatway that the message is coming from.

3. String deviceName: this is the name of the device that the message is coming from.

4. Int queID: every specific message must have a queId to keep track of.

5. Boolean isNotification: is the message a normal message vs a critical message

6. Boolean led: turns this on or off on the local alert for the specific message.

7. Boolean buzzer: turns this on or off on the local alert for the specific message.

8. Boolean scroll: turns this on or off on the local alert for the specific message.

9. Boolean backlight: turns this on or off on the local alert for the specific message.

10. Int year: the year the message took place.

11. Int month: the month the message took place.

12. Int day: the day the month took place.

13. Int hour: the hour the message took place (uses a 24 hour clock model, so 1 would be 1

am and 13 would be 1 pm).

14. Int minute: the minute the message took place (0-59)

15. String message: the body of the actual message you want to send

You can find this starting at line number 234:

14 REVIEW
In this document we have shown how to use the MGSA. How to create a server, register

handlers, register gateways, register sensors, print gateway messages, print sensor messages,

update sensors, and update gateways. To get more advanced with the MJL you will want to look

over the Java Mine API documentation at mine.imonnit.com.

For questions or support please contact your Monnit Sales Rep using our toll free number 877-

561-4555.

http://mine.imonnit.com/

